

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/52

Paper 5 Planning, Analysis and Evaluation

October/November 2016

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9702	52

Question	Answer	Marks
1	Defining the problem	
	p is the independent variable and B is the dependent variable, or vary p and measure B .	1
	Keep the current/ I (in the electromagnet) constant.	1
	Methods of data collection	
	Labelled diagram showing Hall probe correctly positioned (along <i>p</i>) and ruler correctly positioned and either Hall probe or rule supported.	1
	Correct circuit diagram to include <u>d.c.</u> power supply in series with coil and ammeter. Must be a workable circuit diagram to measure current through the coil.	1
	Measure <i>p</i> with ruler.	1
	Method to determine an accurate value of <i>p</i> . Examples include: Height of P above bench – height of electromagnet Height of P measured from ruler across the top of the electromagnet	1
	Method of analysis	
	Plot a graph of In B against p.	1
	α = - gradient	1
	$k = \frac{e^{y-intercept}}{NI}$	1

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9702	52

Question	Answer	Marks
	Additional detail including safety considerations	6
	 Keep the number of turns/N constant. Use large number of turns/current (to increase B). Avoid overheating the coil/do not touch hot coil. Use of variable resistor to keep ammeter reading constant. Method to ensure that Hall probe is equidistant from the poles, e.g. determine centre of electromagnet and use of plumb line/ruler and spirit level/set square. Adjust Hall probe until maximum reading obtained/perpendicular to field. Repeat each experiment for the same value of p and reverse the current/Hall probe and average 	
	 8. In B = -αp + In kNI 9. Relationship is valid if the graph is a straight line. 10. Calibrate Hall probe <u>using a known field</u>. 	

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9702	52

Qı	uestion		Answer		Marks
2	(a)	gradient = q y-intercept = lg p			1
	(b)	2.80 or 2.799 or 2.7993	0.28 or 0.279		
		2.79 or 2.792 or 2.7924	0.30 or 0.301		
		2.77 or 2.771 or 2.7709	0.36 or 0.362		
		2.72 or 2.716 or 2.7160	0.49 or 0.491		
		2.69 or 2.690 or 2.6902	0.57 or 0.568		
		2.67 or 2.672 or 2.6721	0.61 or 0.613		
		All first column correct – either places.			1
	All second column correct. Allow a mixture of decimal places. Uncertainties in $\lg (V/V)$ from ± 0.02 to ± 0.01 . Allow more than one			'	
		significant figure.	II ± 0.02 to ± 0.01.	Allow more than one	1
	(c) (i)	Six points plotted correctly. Must be within half a small square. No "blobs".		1	
		All error bars in lg (V/V) plott All error bars to be plotted. The half a small square and symmetric symme	Total length of bar	must be accurate to less than	1
	(ii)	Line of best fit drawn. Line must not be drawn from top point to bottom point unless points are balanced. Upper end of line should pass between (2.694, 0.55) and (2.700, 0.55) and lower end of line should pass between (2.770, 0.35) and (2.776, 0.35).		1	
		Worst acceptable line drawn Steepest or shallowest possi Mark scored only if all error b	ble line that passe	s through <u>all</u> the error bars.	1
	(iii)	Gradient determined with a tilline. Read-offs must be accurate to Gradient must be negative.	· ·	ast half the length of the drawn are.	1
		Method of determining abso uncertainty = gradient of line or uncertainty = ½(steepest wor	of best fit – gradie	nt of worst acceptable line shallowest worst line gradient)	1

Page 5	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9702	52

Question	Answer	Marks
(iv)	<i>y</i> -intercept determined by substitution into $y = mx + c$. Read-offs must be accurate to half a small square.	1
	Method of determining absolute uncertainty. uncertainty = y-intercept of line of best fit – y-intercept of worst acceptable line or uncertainty = ½(steepest worst line y-intercept – shallowest worst line y-intercept) No ECF from false origin method.	1
(d)	Use of $p = 10^{\text{answer to } 2(\mathbf{c})(i\mathbf{v})}$ or $\log p = \text{answer to } 2(\mathbf{c})(i\mathbf{v})$	1
	$q = \text{gradient } \underline{\text{and}} \text{ in the range } -2.50 \text{ to } -2.70 \underline{\text{and}} \text{ given to 2 or 3 s.f.}$	1
(e)	Use of $V = p \times 950^q$ or $\log V = q \log 950 + \log p$ or $\log V = q \log 950 + y$ -intercept Correct substitution of numbers must be seen to give V .	1